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We consider the problem of constructing a model equation, i. e. the Burgers’ 
equation, for the wave processes in a thermoelastic medium in the presence of 

cylindrical and spherical symmetry, and give a solution to the boundary value 
problem for the initial system of equations. 

The Burgers’ equation [l - 41 serves as the model equation for a medium with 
dissipative properties. A solution of the Burgers’ equation describing the motion 
in the Cartesian coordinate system was studied in detail in [S]. The cases of cy- 
llndrical and spherical symmetry however present definite difficulties. 

1, Derivation of Burgers’ equation with variable coefficient,. 

We consider a process of deformation characterized by the relations 

z1 = x1 + u1 (Xl, t), 52 = X2 53= x3 

where Xk and xk (/c = 1, 2, 3) are the Lagrangian and Eulerian variables,respectively. 
The initial equations consist of the laws of conservation of impulse and energy for a con- 
tinuum. written in a differential form in the Eulerian variables [6, 71. We write these 
equations in the Lagrangian coordinates, taking into account the relations connecting the 
expressions for the physical quantities in the Lagrangian and Eulerian variables, respect- 
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ively. We shall use the Lagrangian coordinates in all the arguments that follow. The 

five-constant theory of ~erm~lastici~ will serve as the mathemati~l model of the 
present problem. Following u]. let us introduce the dimensionless quantities. The equa- 
tions of the mathematical model of nonlinear thermoelasticity then become 

where o, fi and e are the dimensionless diffusion,relaxation and coupling parameters, 

respectively, E is a small parameter, mi (i = 0, 1, . . ., 4) are dimensionless moduli 
of elasticity and n = 0, 1, 2 for the Cartesian, cylindrical and sphericaf coordinates, 
respectively. 

The initial conditions for the system (1.1) are assumed to be null, and the boundary 
conditions are taken in the form 

NJ (E, 4 
at I &=&A = VP1 @A 

where (ql (T) is a given ~ntinuo~ function. 
In what follows, we shall use simultaneously the perturbation method and the coordi- 

nate transformation method. To do this, we expand the dependent variables into series 
in small parameter and introduce a semi-characteristic transformation of the indepen- 
dent variables in the form 

e, = (1 + @ z - 5, z1 = eE 

In accordance with the ~rt~bation method we obtain the following equation in the first 
approximation : 

gf+ 
avo & vo + UIVO t$ = b.l - 
d&l% 

(1.2) 

where 
vo = aTJo / a&, a1 = 3/* (1 + mJ + e) (1 + e)-’ 

a, = Va e (8t13)*~(1 + e)-‘jz 

We solve Eq.. (1.2) with the initial condition 

” (cl, “) &,=l;t~ = - qql @,l), tA = “!$A, q = con?% 

Solution of (1.2) in this form presents definite difficulties, therefore following [ 11 we 
introduce additional transformations, Let us consider separately the cases with different 
values of n. 

Plane wave, ,= = 0. In this case (1.2) yields the classical Burgers’ equation 

the solution of which is known 153. 
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Cylindrical wave, n = 1. We introduce new variables 

Then (1.2) yields 

where 

Equation (1.3) is solved with the initial condition 

00 6, x.2) lrr=tg = - t*%J(pi (t+l), tg = 2tp 

Spherical wave, n = 2. We introduce new variables 

VO = vor,, x2 = In x1 
This yields (1.3) in which 

aa0 (x2) = Vz a2 exp x2 

and the initial condition has the form 
VO (El, TZ) Irl=tg = - tAq’p1 (b)? 

tg = lnt, 

(1.3) 

(1.4) 

(1.5) 

2, Solution of the Burger@* equation with vrrlrblr cosfficisntr. 
Investigation of one-dimensional waves in a nonlinear thermoelastic medium can be re- 
duced to the Burgers’ equation (2; 1) and the initial conditions (2.2) 

g+ 
&A? a=vo 

aluO ay = aa (t) ayz (2.1) 

vo (Y, t)t+ = II (Y) (2.2) 

where a, = const and as (t) is a positive function which has a first order derivative. 
Following [5] we shall seek a solution of (2.1) in the form 

function) 2% (t) a 
vo (Y, t) -= - al - ay ln cp (Y, t) (2.3) 

where (cp (Y, t) is the new sough for function. To find this function we transform Eq. (2.1) 
in accordance with (2.4). First we obtain 

f300 a 2az’ (t) 2az (t) ‘pt’ 
- -7 - 

at ay 
--lnv-7 - 

al cp 1 (2.4) 
&?o a 2nz“ (t) ‘p,,,,” 202 (t) 

ayz .-- ay ---‘P+al al 

where the prime denotes a derivative with respect to the argument. From [S] it follows 
that (2.1) can be written in the form 

S+y$[& UlL.02 - a2 (1) g I = 0 

In accordance with (2.4). we write this equation as follows : 
a 2a2' (t) 2nt (t) ‘Pi 2a22 (t) 

- 

ay 
-~lncp--~cp 

al 

or 
acp 89 a2’ (t) 
- = a2 (t) ay2 - a2 (t) at -cPlncp (2.5) 
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The initial condition (2.2) for (2.5) has, with (2.4) taken into account, the form 

cp (Y, t) It+ = fx (Y) 

fl (Y) = exp {- & to = tg 
0 

and the function fl (y) satisfies the Fourier conditions [8]. 
The equation (2.5) represents a nonlinear differential equation with variable coeffi- 

cients. When a, (t) = a2 = const , it yields a diffusion equation which, with an initial 

condition given, has a closed-type solution [S]. In [l] it was suggested that Eq. (2.1) 
be solved with uz = const, and the value of a2 found for each instant of time from the 
relations (1.4) or (1.5). Below we shall present the solution of (2.1) in a different form, 

with the variability of the coefficient a2 (t) taken into account. 
The solution of (2.5) has the form 

cp(y, t)=~e~p{[-(~)~t+~+~nr+&}~ cpo=const (2.6) 

Indeed, let 
Q (Y, t) = - 1, kn\2t _++lncFo 

from (2.6) we obtain 

(2.7) 

@‘p 51” - x( ) 1 Q 
-= 
a!l2 k 1 a22 (t) exp a2 (t) 

Substituting these relations and (2.6) into (2. l), we obtain an identity. In the case of 
cylindrical or spherical coordinates the solution of the Burgers’ equation (1.3) has the 

form (2.3), (2.6), where a2 (t) is determined from the formulas of the type (1.4) and 
(1.5), respectively, The required solution of (2.1) must satisfy the initial condition (2.2). 
From (2.2) and (2.6) we obtain for t = &I 

ikny 
v (!/, to) = 2 rpk’a*(fo)Al,exp T 

11 = la2 (to) 

(2.8) 

Let us now expand the function fi (Y) into a complex Fourier series 

From (2.8) and (2.9) we obtain 

‘Fo ~= (Qk/ flk)QZ(lO) (2.10) 

Substituting (2.10) into (2.6) we obtain the solution of (2.1) with the initial condition 
(2.2). Now we can write the solution of (2.1) for the case of cylindrical and spherical 
coordinates. 

bet us now turn our attention to certain facts emerging from the proposed solution of 
the Burgers’ equation with variable coefficient, We recall the asymptotic solution for 
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the diffusion equation with a constant coefficient (see [5]). In this solution the effect 
of the initial condition appears in the form of the principal moment of the initial per- 

turbation. In the present case the solution consists of separate terms of the Fourier series 
and each term contains a constant which reflects the influence of the initial impulse. 

The number k of terms depends on the character of the initial condition. As k - 00 , 

the solution obtained becomes exact. If the initial condition coincides exactly with one 
of the terms of the Fourier series, then the solution contains only this particular term. 

In the general case, the first term of the series gives only a rough approximation. The 

quantity 1 appearing in the expansion is taken as equal to the length of the impulse. 
When a2 = const , the solution proposed also gives an accurate result and this can easily 
be confirmed by substituting the relations (2.7) into the corresponding diffusion equation 
and taking into account the fact that a-L’ (1) = 0. However in this case the accuracy of 
the solution also depends on the number of terms in the expansion. 
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